Abstract
Most conventional blood flow estimation methods measure only the axial component of the blood velocity vector. In this study, we developed a new method for two-dimensional (2-D) velocity vector estimation in which time shifts resulting from blood motion are calculated for the individual channels using aperture domain data. This allows the construction of a time-shift profile along the array direction as a function of channel index, which is approximated by a first-order polynomial whose zeroth-order and first-order terms can be used to determine the axial and lateral velocity components, respectively. The efficacy of the proposed method was verified by simulations and experiments in which the transducer array had 64 elements, an aperture size of 1.96 cm, and a center frequency of 5 MHz. The flow velocity ranged from 5 to 35 cm/s and the Doppler angle ranged from 0 degrees to 90 degrees. The experimental results show that the accuracy of axial velocity estimation is higher for the new method than for the autocorrelation-based conventional method when the signal-to-noise ratio is larger than 0 dB. The mean estimation error for the axial velocity component is 2.18% for the new method, compared to 4.51% for the conventional method. The mean estimation error for the lateral velocity component is 15%, which is comparable to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.