Abstract

In this study, the survival fraction (SF) and relative biological effectiveness (RBE) of pancreatic cancer cells exposed to spread-out Bragg peak helium, carbon, oxygen, and neon ion beams are estimated from the measured microdosimetric spectra using a microdosimeter and the application of the microdosimetric kinetic (MK) model. To measure the microdosimetric spectra, a 3D mushroom silicon-on-insulator microdosimeter connected to low noise readout electronics (MicroPlus probe) was used. The parameters of the MK model were determined for pancreatic cancer cells such that the calculated SFs reproduced previously reported in vitro SF data. For a cuboid target of 10 × 10 × 6 cm3, treatment plans of helium, carbon, oxygen, and neon ion beams were designed using in-house treatment planning software (TPS) to achieve a 10% SF of pancreatic cancer cells throughout the target. The physical doses and microdosimetric spectra of the planned fields were measured at different depths in polymethyl methacrylate phantoms. The biological effects, such as SF, RBE, and RBE-weighted dose at different depths along the fields were predicted from the measurements. The predicted SFs at the target region were generally in good agreement with the planned SF from the TPS in most cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.