Abstract

In the Pacific Northwest, widespread stream channel simplification has led to a loss of habitat area and diversity for rearing salmon. Subsequent efforts throughout the Columbia River basin (CRB) have attempted to restore habitats altered through land development to recover imperiled salmon populations. However, there is scant evidence for demographic change in salmon populations following restoration. We used a process-based approach to estimate the potential benefit of floodplain reconnection throughout the CRB to Chinook salmon (Oncorhynchus tshawytscha) parr. Using satellite imagery, we measured stream habitats at 2093 CRB stream reaches to construct random forest models of habitat based on geomorphic and regional characteristics. Connected floodplain width was the most important factor for determining side channel presence. We estimated a current CRB-wide decrease in side channel habitat area of 26% from historical conditions. Reconnection of historical floodplains currently used for agriculture could increase side channel habitat by 25% and spring Chinook salmon parr total rearing capacity by 9% over current estimates. Individual watersheds vary greatly in habitat factors that limit salmon recovery, and large-scale estimates of restoration potential like these are needed to make decisions about long-term restoration goals among imperiled populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call