Abstract

Distributed processing algorithms are attractive alternatives to centralized algorithms for target tracking applications in sensor networks. In this paper, we address the issue of determining a initial probability distribution of multiple target states in a distributed manner to initialize distributed trackers. Our approach is based on Monte-Carlo methods, where the state distributions are represented as a discrete set of weighted particles. The target state vector is the target positions and velocities in the 2D plane. Our approach can determine the state vector distribution even if the individual sensors are not capable of observing it. The only condition is that the network as a whole can observe the state vector. A robust weighting strategy is formulated to account for misdetections and clutter. To demonstrate the effectiveness of the algorithm, we use direction-of-arrival nodes and range-Doppler nodes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.