Abstract

This paper develops an efficient Monte Carlo method to estimate the tail probabilities of the ratio of the largest eigenvalue to the trace of the Wishart matrix, which plays an important role in multivariate data analysis. The estimator is constructed based on a change-of-measure technique and it is proved to be asymptotically efficient for both the real and complex Wishart matrices. Simulation studies further show the improved performance of the proposed method over existing approaches based on asymptotic approximations, especially when estimating probabilities of rare events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.