Abstract

Since 1998, ferry observations have been carried out in the Marsdiep tidal inlet (Dutch Wadden Sea), using amongst other instruments a vessel-mounted acoustic Doppler current profiler (ADCP). Besides 32 cross-sections a day of current velocity data, the instrument also records the echo intensity, which has been interpreted in terms of suspended sediment concentration (SSC) before (Thorne and Hanes, Cont Shelf Res 22:603–632, 2002). However, we show herein that the random phase scattering model as outlined by Thorne and Hanes (Cont Shelf Res 22:603–632, 2002), predicts unrealistically high values of SSC if the depth-averaged current velocity exceeds approximately 0.7 m/s. Therefore, we extended the random phase scattering model by including scattering by turbulence-induced variability in SSC. The important mechanism is that when SSC fluctuations are present at length, scales of the order of the acoustic wavelength, the phase of the returned signal is no longer random and causes stronger backscatter. Such SSC fluctuations occur as a result of turbulent eddies in combination with an SSC gradient. The extended model was compared with data of two field surveys carried out in the Marsdiep inlet. The extended model, when compared with the classical random phase model, showed a large improvement of accuracy of the estimated SSC, which allows us to apply the model to the ferry data set to analyse suspended sediment transports through the Marsdiep tidal inlet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.