Abstract
In this paper we describe and analyze a method based on local least square fitting for estimating the normals at all sample points of a point cloud data (PCD) set, in the presence of noise. We study the effects of neighborhood size, curvature, sampling density, and noise on the normal estimation when the PCD is sampled from a smooth curve in ℝ2or a smooth surface in ℝ3, and noise is added. The analysis allows us to find the optimal neighborhood size using other local information from the PCD. Experimental results are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Geometry & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.