Abstract

In this paper, sequential estimation on hidden asset value and model parameter estimation is implemented under the Black–Cox model. To capture short‐term autocorrelation in the stock market, we assume that market noise follows a mean reverting process. For estimation, Bayesian methods are applied in this paper: the particle filter algorithm for sequential estimation of asset value and the generalized Gibbs and multivariate adapted Metropolis methods for model parameters estimation. The first simulation study shows that sequential hidden asset value estimation using both option price and equity price is more efficient than estimation using equity price alone. The second simulation study shows that, by applying the generalized Gibbs sampling and multivariate adapted Metropolis methods, model parameters can be estimated successfully. In an empirical analysis, the stock market noise for firms with more liquid stock is estimated as having smaller volatility. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.