Abstract

Ultra-cold atoms in optical lattices provide one of the most promising platforms for analog quantum simulations of complex quantum many-body systems. Large-size systems can now routinely be reached and are already used to probe a large variety of different physical situations, ranging from quantum phase transitions to artificial gauge theories. At the same time, measurement techniques are still limited and full tomography for these systems seems out of reach. Motivated by this observation, we present a method to directly detect and quantify to what extent a quantum state deviates from a local Gaussian description, based on available noise correlation measurements from in-situ and time-of-flight measurements. This is an indicator of the significance of strong correlations in ground and thermal states, as Gaussian states are precisely the ground and thermal states of non-interacting models. We connect our findings, augmented by numerical tensor network simulations, to notions of equilibration, disordered systems and the suppression of transport in Anderson insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.