Abstract

A scheme for estimating atmospheric parameters T$_{eff}$, log$~g$, and [Fe/H] is proposed on the basis of Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra respectively from Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST), and Kurucz's model, respectively. The mean absolute errors are as follows: for 40~000 SDSS spectra, 0.0062 dex for log~T$_{eff}$ (85.83 K for T$_{eff}$), 0.2035 dex for log$~g$ and 0.1512 dex for [Fe/H]; for 23963 LAMOST spectra, 0.0074 dex for log~T$_{eff}$ (95.37 K for T$_{eff}$), 0.1528 dex for log~$g$, and 0.1146 dex for [Fe/H]; and for 10469 synthetic spectra, 0.0010 dex for log T$_{eff}$(14.42K for T$_{eff}$), 0.0123 dex for log~$g$, and 0.0125 dex for [Fe/H].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.