Abstract

Mountain ash (Eucalyptus regnans F.J. Muell.) forest catchments exhibit a strong relationship between stand age and runoff, attributed inter alia to differences in tree water use. However, the tree water use component of the mountain ash forest water balance is poorly quantified. We have used the sap flow technique to obtain estimates of daily water use in large mountain ash trees. First, the sap flow technique was validated by means of an in situ cut tree experiment. Close agreement was obtained between the sap flow estimate of water use and the actual uptake of water by the tree from a reservoir. Second, we compared the variability in sap velocity between a symmetric and an asymmetric tree by using multiple sap flow loggers. In the symmetric tree, velocity was fairly uniform throughout the xylem during the day, indicating that accurate sap flow estimates can be obtained with a minimal number of sampling points. However, large variations in sap velocity were observed in the asymmetric tree, indicating that much larger sampling sizes are required in asymmetric stems for an accurate determination of mean sap velocity. Finally, we compared two procedures for scaling individual tree sap flow estimates to the stand level based on stem diameter and leaf area index measurements. The first procedure was based on a regression between stem diameter and tree water use, developed on a small sample of trees and applied to a stand-level census of stem diameter values. Inputs to the second procedure were tree water use and leaf area of a single tree and the leaf area index of the stand. The two procedures yielded similar results; however, the first procedure was more robust but it required more sampling effort than the second procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call