Abstract

We consider the situation of a large-scale stationary flow subjected to small-scale fluctuations. Assuming that the stable and unstable manifolds of the large-scale flow are known, we quantify the mean behavior and stochastic fluctuations of particles close to the unperturbed stable and unstable manifolds and their evolution in time. The mean defines a smooth curve in physical space, while the variance provides a time- and space-dependent quantitative estimate where particles are likely to be found. This allows us to quantify transport properties such as the expected volume of mixing as the result of the stochastic fluctuations of the transport barriers. We corroborate our analytical findings with numerical simulations in both compressible and incompressible flow situations. We moreover demonstrate the intimate connection of our results with finite-time Lyapunov exponent fields, and with spatial mixing regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.