Abstract
Synthetic aperture radar interferometry has been applied widely in recent years to ground deformation monitoring although difficulties are often encountered when applying the technology, among which the spatial and temporal decorrelation and atmospheric artifacts are the most prominent. The persistent-scatterer interferometric synthetic aperture radar (PS-InSAR) technique has overcome some of the difficulties by focusing only on the temporally coherent radar targets in a time series of synthetic aperture radar (SAR) images. This paper presents an improved PS-InSAR technique by introducing PS-neighborhood networking and empirical mode decomposition (EMD) approaches in the PS-InSAR solution. Linear deformation rates and topographic errors are estimated based on a least squares method, while the nonlinear deformation and atmospheric signals are computed by singular value decomposition and the EMD method. An area in Phoenix, AZ, is used as a test site to determine its historical subsidence with 39 C-band SAR images acquired by European Remote Sensing 1 and 2 satellites from 1992 to 2000.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.