Abstract

Abstract In this paper, a new data-driven modeling of a diesel engine soot emission formation using gated recurrent unit (GRU) networks is proposed. Different from the traditional time series prediction methods such as nonlinear autoregressive with exogenous input (NARX) approach, GRU structure does not require the determination of the pure time delay between the inputs and the output, and the number of regressors does not have to be chosen beforehand. Gates in a GRU network enable to capture such dependencies on the past input values without any prior knowledge. As a design of experiment, 30 different points in engine speed - injected fuel quantity plane are determined and the rest of the input channels, i.e., rail pressure, main start of injection, equivalence ratio, and intake oxygen concentration are excited with chirp signals in the intended regions of operation. Experimental results show that the prediction performances of GRU based soot models are quite satisfactory with 77% training and 57% validation fit accuracies and normalized root mean square error (NRMSE) values are less than 0.038 and 0.069, respectively. GRU soot models surpass the traditional NARX based soot models in both steady-state and transient cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.