Abstract

Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure.

Highlights

  • Soil organic carbon (SOC), which plays a critical role in the global carbon cycle, comprises a major part of the terrestrial carbon reservoir [1,2,3]

  • The goal of this study is to evaluate the uncertainties of changes in scale among the four estimation methods by using a newly completed 1:50,000 soil survey geographic database of Zhejiang Province, China

  • The SOC stocks for soil classification levels up-scaling from Soil Species to Soil Group using the mean, median, Soil Profile Statistics (SPS), and professional knowledge based (PKB) methods were calculated (Figure 2)

Read more

Summary

Introduction

Soil organic carbon (SOC), which plays a critical role in the global carbon cycle, comprises a major part of the terrestrial carbon reservoir [1,2,3]. Bohn [18] estimated the total SOC stock was 3,000 Pg (1 Pg = 1015 g), whereas Bolin [19] estimated only 710 Pg, over a four-fold difference. In China, estimated SOC stocks for terrestrial ecosystems range from 50 Pg [20] to 185.7 Pg [21], approximately a four-fold difference. The SPS method calculates SOC stock by multiplying the SOC density value of a soil type by its corresponding field survey area recorded in soil survey reports (e.g., Soil Species of China [29]). The GIS-based Soil Type method calculates areas of various soil types accurately based on digital soil map and can provide information on the spatial distribution of SOC stocks

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.