Abstract

A new integrated approach for identifying the shallow subsurface electric properties from ground‐penetrating radar (GPR) signal is proposed. It is based on an ultrawide band (UWB) stepped frequency continuous wave (SFCW) radar combined with a dielectric filled transverse electric and magnetic (TEM) horn antenna to be used off the ground in monostatic mode; that is, a single antenna is used as emitter and receiver. This radar configuration is appropriate for subsurface mapping and allows for an efficient and more realistic modeling of the radar‐antenna‐subsurface system. Forward modeling is based on linear system response functions and on the exact solution of the three‐dimensional Maxwell equations for wave propagation in a horizontally multilayered medium representing the subsurface. Subsurface electric properties, i.e., dielectric permittivity and electric conductivity, are estimated by model inversion using the global multilevel coordinate search optimization algorithm combined sequentially with the local Nelder‐Mead simplex algorithm (GMCS‐NMS). Inversion of synthetic data and analysis of the corresponding response surfaces proved the uniqueness of the inverse solution. Laboratory experiments on a tank filled with a homogeneous sand subject to different water content levels further demonstrated the stability and accuracy of the solution toward measurement and modeling errors, particularly those associated with the dielectric permittivity. Inversion for the electric conductivity led to less satisfactory results. This was mainly attributed to the characterization of the frequency response of the antenna and to the high frequency dependence of the electric conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.