Abstract
For accurate estimation of broiler chicken weight (CW), a novel hybrid method was developed in this study where several benchmark methods, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Differential Evolution (DE), and Gravity Search Algorithm (GSA), were employed to adjust the Random Forest (RF) hyperparameters. The performance of the RF models was compared with that of classic linear regression (LR). With this aim, data (temperature, relative humidity, feed consumption, and CW) were collected from six poultry farms in Samsun, Türkiye, covering both the summer and winter seasons between 2014 and 2021. The results demonstrated that PSO and ACO significantly enhanced the performance of the standard RF model in all periods. Specifically, the RF-PSO model achieved a significant improvement by reducing the Mean Absolute Error (MAE) by 5.081% to 60.707%, highlighting its superior prediction accuracy and efficiency. The RF-ACO model also showed remarkable MAE reductions, ranging from 3.066% to 43.399%, depending on the input combinations used. In addition, the computational time required to train the RF models with PSO and ACO was considerably low, indicating their computational efficiency. These improvements emphasize the effectiveness of the PSO and ACO algorithms in achieving more accurate predictions of CW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.