Abstract

This paper aims to estimate the risk effects of distracted driving, by incorporating a dynamic, data-driven car-following model in an algorithmic framework. The model was developed to predict the situational risk associated with distracted driving. To obtain longitudinal driving patterns, this paper analyzed and synthesized the NGSIM naturalistic driver and traffic database, through a dynamic time warping algorithm, to identify essential driver behavior and characteristics. Cognitive psychology concepts, distracted driving simulator, and experimental data were adapted to examine the probabilistic nature of distracted driving due to internal vehicle distractions. An extended microscopic car-following model was developed and validated, which can be fully integrated with the naturalistic data and incorporate the probabilities of driver distraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.