Abstract
This study proposes a method for improving the estimation of surface turbulent fluxes in surface energy balance system (SEBS) model under water stress conditions using MODIS data. The normalized difference water index (NDWI) as an indicator of water stress is integrated into SEBS. To investigate the feasibility of the new approach, the desert-oasis region in the middle reaches of the Heihe River Basin (HRB) is selected as the study area. The proposed model is calibrated with meteorological and flux data over 2008– 2011 at the Yingke station and is verified with data from 16 stations of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project in 2012. The results show that soil moisture significantly affects ET under water stress conditions in the study area. Adding the NDWI in SEBS can significantly improve the estimations of surface turbulent fluxes in water-limited regions especially for spare vegetation cover area. The daily ET maps generated by the new model also show improvements in drylands with low ET values. This study demonstrates that integrating the NDWI into SEBS as an indicator of water stress is an effective way to improve the assessment of the regional ET in semi-arid and arid regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.