Abstract

BackgroundPerfusion MRI is an important modality in many brain imaging protocols, since it probes cerebrovascular changes in aging and many diseases; however, it may not be always available. New methodWe introduce a new method that seeks to estimate regional perfusion properties using spectral information of resting-state functional MRI (rsfMRI) via machine learning. We used pairs of rsfMRI and arterial spin labeling (ASL) images from the same individuals with normal cognition and mild cognitive impairment (MCI), and built support vector machine models aiming to estimate regional cerebral blood flow (CBF) from the rsfMRI signal alone. ResultsThis method demonstrated higher associations between the estimated CBF and actual CBF (ASL-CBF) at the total lobar gray matter (r = 0.40; FDR-p = 1.9e-03), parietal lobe (r = 0.46, FDR-p = 8e-04), and occipital lobe (r = 0.35; FDR-p = 0.01) using rsfMRI signals of frequencies [0.01-0.15] Hertz compared to frequencies [0.01-0.10] Hertz and [0.01-0.20] Hertz. We further observed significant associations between the estimated CBF and actual CBF in 24 regions of interest (p < 0.05), with the highest association observed in the superior parietal lobule (r = 0.50, FDR-p = 0.002). Moreover, the estimated CBF at superior parietal lobule showed significant correlation with the mini-mental state exam (MMSE) score (r = 0.27; FDR-p = 0.04) and decreased in MCI with lower MMSE score compared to NC group (FDR-p = 0.04). Comparison with existing methodsConsistent with previous findings, this new method also suggests that rsfMRI signals contain perfusion information. ConclusionThe proposed framework can obtain estimates of regional perfusion from rsfMRI, which can serve as surrogate perfusion measures in the absence of ASL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call