Abstract

Predicting the performance of chemical reactions with a mechanistic model is desired during the development of pharmaceutical and other high value chemical syntheses. Model parameters usually must be regressed to experimental observations. However, experimental error may not follow conventional distributions and the validity of common statistical assumptions used for regression should be examined when fitting mechanistic models.This paper compares different techniques to estimate parameter confidence for reaction models encountered in pharmaceutical manufacturing, simulated with either normally distributed or experimentally measured noise. Confidence intervals were calculated following standard linear approaches and two Markov Chain Monte Carlo algorithms utilizing a Bayesian approach to parameter estimation: one assuming a normal error distribution, and a new non-parametric likelihood function. While standard frequentist approaches work well for simpler nonlinear models and normal distributions, only MCMC accurately estimates uncertainty when the system is highly nonlinear, and can account for any measurement bias via customized likelihood functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.