Abstract

BackgroundBirds harbour an astonishing diversity of haemosporidian parasites. Renewed interest in avian haemosporidians as a model system has placed a greater emphasis on the development of screening protocols to estimate parasite prevalence and diversity. Prevalence estimates are often based on the molecular or blood-smear microscopy techniques. However, variation in diagnostic sensitivity among screening methodologies represents a potential source of bias that may lead to erroneous inference in comparisons of prevalence across studies. Here, we analyzed a suite of blood samples for the presence of parasites using four diagnostic tools and compared method-specific estimates of detection probability to assess the relative performance of screening strategies.MethodsWe screened a total of 394 bird blood samples collected in India (n = 203) and Sweden (n = 191) for the combined presence of Plasmodium, Haemoproteus and Leucocytozoon with three PCR assays: (i) qPCR; (ii) restriction enzyme-based assay; and (iii) nested protocol. In addition, we examined blood smears for estimates of parasite intensity which was further screened using qPCR method to evaluate if parasite intensity shows a relationship with qPCR (Ct values). Furthermore, we used single infected samples from parasite intensities: low, medium, high, very high to establish the reproducibility in qPCR.ResultsFor the combined data sets from India and Sweden, detection probability for submicroscopic and low intensity infections was highest for the qPCR method, followed by the nested protocol and the restriction enzyme-based assay. For high parasite intensities, the qPCR had high PCR reproducibility, with three out of three PCR replicates being positive and with consistent Ct values across all tenfold dilution series. For parasite intensities at very low and submicroscopic samples, the qPCR was reproducible in one out of the three replicates. The intensity of parasitemia estimated from smears showed inverse relationship with Ct values in both the Indian and Swedish data sets.ConclusionsOur study highlights the importance of accounting for methodological issues to better estimate infection in parasitological studies and illustrates how a wider deployment of diagnostic tools combined with statistical approaches is needed for each study, in order to provide adequate insight into the most appropriate approach to avoid erroneous inferences.

Highlights

  • Birds harbour an astonishing diversity of haemosporidian parasites

  • Using 394 bird blood samples from 93 host species representing 40 genera, 28 families, and 10 orders, we evaluated three detection methods; restriction enzyme-based assay, nested protocol, Quantitative PCR (qPCR) in two independent labs in India and Sweden

  • The objectives of this study are: i) to evaluate the accuracy and sensitivity of different detection methods for three genera of avian haemosporidians; ii) to determine the qPCR efficiency across four parasite intensities based on blood smear data; and iii) how infection intensity based on blood smear data relates with qPCR (Ct values)

Read more

Summary

Introduction

Birds harbour an astonishing diversity of haemosporidian parasites. Renewed interest in avian haemosporidians as a model system has placed a greater emphasis on the development of screening protocols to estimate parasite prevalence and diversity. The validity of many comparative studies partly hinges upon the accuracy with which prevalence is estimated; underestimation of prevalence can lead to biased ecological and epidemiological inferences. Since both host and parasite interactions occur in complex and multidimensional environment, parasite prevalence tends to vary at spatial and temporal scales either due to differences in the environmental exposure to parasites [7], or host susceptibility or resistance to infection in natural populations [8]. Variation in diagnostic sensitivity among screening methodologies represents a potential source of bias that may lead to erroneous inference when comparing prevalence across studies. Accurate estimates of prevalence is a pre-requisite when exploring underlying patterns that can contribute to better understanding of the evolution of parasitism and for drawing realistic inferences in epidemiological and conservation studies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call