Abstract

Power Supply Noise has a significant impact on path delay and therefore its estimation is critical in delay testing. In deep sub-micron technologies, voltages are scaled and the number of switching gates has increased which make chips susceptible to power supply noise. Running full-chip simulations on large designs to predict the noise is time consuming and expensive. Therefore, most existing techniques are based on statistical approaches. In this paper, we propose a current-based dynamic method to estimate power supply noise and use the framework to predict the increase in path delay caused by the variations in power supply voltage without carrying out a full-chip simulation. A convolution-based technique is used to compute the path delays where standalone paths are extracted and simulated. Experimental results reported for estimating noise using the ISCAS-85 benchmark circuit are within 10% of full-chip results. The delay predictions carried out on two other experimental designs using our technique closely match full-chip results with a maximum error of 2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.