Abstract

Exposure to waterborne pathogens in recreational or drinking water is a serious public health concern. Thus, it is important to determine the sources of pathogens in a watershed and to quantify their environmental loadings. The natural variability of potentially pathogenic microorganisms in the environment from anthropogenic, natural, and livestock sources is large and has been difficult to quantify. A first step in characterizing the risk of nonpoint source contamination from pathogens of livestock origin is to determine the potential environmental loading based on animal prevalence and fecal shedding intensity. This study developed a probabilistic model for estimating the production of Cryptosporidium spp. and Campylobacter spp. from livestock sources within a watershed. Probability density functions representing daily pathogen production rates from livestock were simulated for the Grand River Watershed in southwestern Ontario. The prevalence of pathogenic microorganisms in animals was modeled as a mixture of beta-distributions with parameters drawn from published studies. Similarly, gamma-distributions were generated to describe animal pathogen shedding intensity. Results demonstrate that although cattle are responsible for the largest amount of manure produced, other domesticated farm animals contribute large numbers of the two pathogenic microorganisms studied. Daily pathogen production rates are highly sensitive to the parameters of the gamma-distributions, illustrating the need for reliable data on animal shedding intensity. The methodology may be used for identifying source terms for pathogen fate and transport modeling and for defining and targeting regions that are most vulnerable to water contamination from pathogenic sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call