Abstract

Overlapping community detection has become a very hot research topic in recent decades, and a plethora of methods have been proposed. But, a common challenge in many existing overlapping community detection approaches is that the number of communities K must be predefined manually. We propose a flexible nonparametric Bayesian generative model for count-value networks, which can allow K to increase as more and more data are encountered instead of to be fixed in advance. The Indian buffet process was used to model the community assignment matrix Z, and an uncollapsed Gibbs sampler has been derived. However, as the community assignment matrix Z is a structured multi-variable parameter, how to summarize the posterior inference results and estimate the inference quality about Z, is still a considerable challenge in the literature. In this paper, a graph convolutional neural network based graph classifier was utilized to help to summarize the results and to estimate the inference quality about Z. We conduct extensive experiments on synthetic data and real data, and find that empirically, the traditional posterior summarization strategy is reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.