Abstract

Karst aquifers are a major source of drinking water with intrinsic features that increase the pollution risk from anthropogenic and natural impacts. In Yucatan, Mexico, groundwater is the sole source of drinking water, also acting as receptor of untreated wastewater due to the low regional coverage of sewer systems. To protect karst groundwater, vulnerability methodologies are widely used. Worldwide, multiple karst vulnerability schemes have been developed and tested; however, none of these consider pollutant residence time or pollutant concentration as core parameters to estimate vulnerability. This work aims to define important considerations regarding the behavior of nitrates (NO3) in a real scenario, to be included in a new integrated vulnerability method. This work has two main objectives: to set up a groundwater model to depict as close as possible the groundwater behavior of the Yucatan karst system, and to introduce a transport model to estimate the behavior of a pollution plume. Model outcomes suggest that pollutants have a short residence time, reaching the coast in the north after 3 years. Well fields are also affected by pollution at variable NO3 concentrations. Results can be further discretized to establish a base and to include these parameters as part of a new integrated groundwater vulnerability approach.

Highlights

  • Karst refers to a landscape where solubility of carbonate rocks allows the formation of caves, sinkholes and conduits [1]

  • The present study focuses on Yucatan, on the Merida Metropolitan Area (MMA)

  • To the best of our knowledge, no other groundwater model, including the Conduit Flow Process (CFP), has been applied to this region; model files were created from scratch and the model can be improved according to newly available data

Read more

Summary

Introduction

Karst refers to a landscape where solubility of carbonate rocks allows the formation of caves, sinkholes and conduits [1]. Karsts aquifers are sensitive to pollution due to their intrinsic features including acting as a bypass between surface and water table, which allows pollutants to reach groundwater more and faster with little to no degradation in comparison with unconsolidated aquifers [2,3]. Use of artisanal septic tanks is a common practice in Yucatan State. Since they are not impermeable, constant infiltration of wastewater into the aquifer occurs. This situation increases the pollution risk of well fields located in the periphery of urban areas [5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.