Abstract
This study explores the utility of small-footprint, discrete return lidar data in deriving important forest structural attributes with the primary objective of estimating plot-level mean tree height, dominant height, and volume of Eucalyptus grandis plantations. The secondary objectives of the study were related to investigating the effect of lidar point densities (1 point/m2, 3 points/m2, and 5 points/m2) on height and volume estimates. Tree tops were located by applying local maxima (LM) filtering to canopy height surfaces created at each density level, followed by buffering using circular polygons. Maximum and mean height values of the original lidar points falling within each tree polygon were used to generate lidar mean and dominant heights. Lidar mean value was superior to the maximum lidar value approach in estimating mean plot height (R2∼0.95; RMSE∼7%), while the maximum height approach resulted in superior estimates for dominant plot height (R2 ∼0.95; RMSE∼5%). These observations were similar across all lidar point density levels. Plot-level volume was calculated using approaches based on lidar-derived height variables and stems per hectare, as well as stand age. The level of association between estimated and observed volume was relatively high (R2=0.82—0.94) with non-significant differences among estimates at high lidar point densities and field observation. Nearly all estimates, however, exhibited negative biases and RMSE ranging in the order of 20—43%. Overall, the results of the study demonstrate the potential of lidar-based approaches for forest structural assessment in commercial plantations, even though further research is required on improving stems per hectare (SPHA) estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Physical Geography: Earth and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.