Abstract

This paper reports a verification study for a method that fits functions to sets of data from several experiments simultaneously. The method finds a maximum a posteriori probability estimate of a function subject to constraints (e.g., convexity in the study), uncertainty about the estimate, and a quantitative characterization of how data from each experiment constrains that uncertainty. While this work focuses on a model of the equation of state (EOS) of gasses produced by detonating a high explosive, the method can be applied to a wide range of physics processes with either parametric or semiparametric models. As a verification exercise, a reference EOS is used and artificial experimental data sets are created using numerical integration of ordinary differential equations and pseudo-random noise. The method yields an estimate of the EOS that is close to the reference and identifies how each experiment most constrains the result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call