Abstract
This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context of signal plus noise models. Daily data on the NASDAQ index are analysed. The results suggest that volatility has a component of long- memory behaviour, the order of integration ranging between 0.3 and 0.5, the series being therefore stationary and mean-reverting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.