Abstract

The insufficient number of ground-based stations for measuring Particulate Matter <10μm (PM10) in the developing countries hinders PM10 monitoring at a regional scale. The present study aims to develop empirical models for PM10 estimation from space over Malaysia using aerosol optical depth (AOD550) and meteorological (surface temperature, relative humidity and atmospheric stability) data (retrieved or estimated) from Moderate Resolution Imaging Spectroradiometer (MODIS) during the period 2007–2011. The MODIS retrievals are found to be satisfactorily correlated with ground-based measurements at Malaysia. Multiple linear regressions (MLR) and Artificial Neural Network (ANN) techniques are utilized to develop the empirical models for PM10 estimation. The model development and training are performed via comparison with measured PM10 at 29 stations over Malaysia and reveal that the ANN provides slightly higher accuracy with R2=0.71 and RMSE=11.61μgm−3 compared to the MLR method (R2=0.66 and RMSE=12.39μgm−3). Stepwise regression analysis performed on the MLR method reveals that the MODIS AOD550 is the most important parameter for PM10 estimations (R2=0.59 and RMSE=13.61μgm−3); however, the inclusion of the meteorological parameters in the MLR increases the accuracy of the retrievals (R2=0.66, RMSE=12.39μgm−3). The estimated PM10 concentrations are finally validated against surface measurements at 16 stations resulting in similar performance from the ANN model (R2=0.58, RMSE=10.16μgm−3) and MLR technique (R2=0.56, RMSE=10.58μgm−3). The significant accuracy that has been attained in PM10 estimations from space allows us to assess the pollution levels in Malaysia and map the PM10 distribution at large spatial and temporal scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.