Abstract

AbstractWe develop statistical procedures for estimating shape and orientation of arbitrary three‐dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so‐called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non‐parametric test for such isotropy. A flexible Lévy‐based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call