Abstract

Abstract BAJA SAE is an engineering competition that challenges teams to design single-seat all-terrain vehicles that participate in a vast number of events, predominately on soft soils. Efficient performance in the events depends on the traction forces, which are dependent on the mechanical properties of the soil. To accurately model vehicle performance for each event, a model of the tire traction performance is required, and the tire model must be incorporated with a vehicle dynamics simulation. The traction forces at the soil-tire interface can be estimated using the Bekker-Wong stress integration method. However, commercially available vehicle dynamics simulation software, with a focus on on-road vehicles, does not utilize Bekker-Wong parameters. The Pacejka Magic Tire (MT) Formula is a common method for characterizing tire behavior for on-road vehicles. The parameters for the Pacejka MT Formula are usually produced by curve fitting measured tire data. The lack of available measured off-road tire data, as well as the additional variables for off-road tire performance (e.g. soil mechanics), make it difficult for BAJA SAE teams to simulate vehicle performance using commercial vehicle simulation tools. This paper discusses the process and results for estimating traction performance using the Bekker-Wong stress integration method for soft soils and then deriving the Pacejka coefficients based on the Bekker-Wong method. The process will enable teams to use the Pacejka Magic Tire Formula coefficients for simulating vehicle performance for BAJA SAE events, such as the hill climb, (off-road) land maneuverability, tractor pull, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.