Abstract

P- and S-wave inverse quality factors quantify seismic wave attenuation, which is related to several key reservoir parameters (porosity, saturation, and viscosity). Estimating the inverse quality factors from observed seismic data provides additional and useful information during gas-bearing reservoir prediction. First, we have developed an approximate reflection coefficient and attenuative elastic impedance (QEI) in terms of the inverse quality factors, and then we established an approach to estimate elastic properties (P- and S-wave impedances, and density) and attenuation (P- and S-wave inverse quality factors) from seismic data at different incidence angles and frequencies. The approach is implemented as a two-step inversion: a model-based and damped least-squares inversion for QEI, and a Bayesian Markov chain Monte Carlo inversion for the inverse quality factors. Synthetic data tests confirm that P- and S-wave impedances and inverse quality factors are reasonably estimated in the case of moderate data error or noise. Applying the established approach to a real data set is suggestive of the robustness of the approach, and furthermore that physically meaningful inverse quality factors can be estimated from seismic data acquired over a gas-bearing reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call