Abstract

SUMMARY We consider the problem of fitting a generalized linear model to overdispersed data, focussing on a quasilikelihood approach in which the variance is assumed to be proportional to that specified by the model, and the constant of proportionality, φ, is used to obtain appropriate standard errors and model comparisons. It is common practice to base an estimate of φ on Pearson’s lack-of-fit statistic, with or without Farrington’s modification. We propose a new estimator that has a smaller variance, subject to a condition on the third moment of the response variable. We conjecture that this condition is likely to be achieved for the important special cases of count and binomial data. We illustrate the benefits of the new estimator using simulations for both count and binomial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.