Abstract
Multinomial data arise in many areas of the life sciences, such as mark-recapture studies and phylogenetics, and will often by overdispersed, with the variance being higher than predicted by a multinomial model. The quasi-likelihood approach to modeling this overdispersion involves the assumption that the variance is proportional to that specified by the multinomial model. As this approach does not require specification of the full distribution of the response variable, it can be more robust than fitting a Dirichlet-multinomial model or adding a random effect to the linear predictor. Estimation of the amount of overdispersion is often based on Pearson's statistic X2 or the deviance D. For many types of study, such as mark-recapture, the data will be sparse. The estimator based on X2 can then be highly variable, and that based on D can have a large negative bias. We derive a new estimator, which has a smaller asymptotic variance than that based on X2 , the difference being most marked for sparse data. We illustrate the numerical difference between the three estimators using a mark-recapture study of swifts and compare their performance via a simulation study. The new estimator has the lowest root mean squared error across a range of scenarios, especially when the data are verysparse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.