Abstract

Background: A key element of the evaluation of warehouse operation is the average order-picking time. In warehouses where the order-picking process is carried out according to the picker-to-part rule the order-picking time is usually proportional to the distance covered by the picker while picking items. This distance can by estimated by simulations or using mathematical equations. In the paper only the best described in the literature one-block rectangular warehouses are considered. Material and methods: For the one-block rectangular warehouses there are well known five routing heuristics. In the paper the author considers the return heuristic in two variants. The paper presents well known Hall's and De Koster's equations for the average distance traveled by the picker while completing items from one pick list. The author presents own proposals for calculating the expected distance. Results: the results calculated by the use of mathematical equations (the formulas of Hall, De Koster and own propositions) were compared with the average values obtained using computer simulations. For the most cases the average error does not exceed 1% (except for Hall's equations). To carry out simulation the computer software Warehouse Real-Time Simulator was used. Conclusions: the order-picking time is a function of many variables and its optimization is not easy. It can be done in two stages: firstly using mathematical equations the set of the potentially best variants is established, next the results are verified using simulations. The results calculated by the use of equations are not precise, but possible to achieve immediately. The simulations are more time-consuming, but allow to analyze the order-picking process more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call