Abstract
Option valuation problems are often solved using standard Monte Carlo (MC) methods. These techniques can often be enhanced using several strategies especially when one discretizes the dynamics of the underlying asset, of which we assume follows a diffusion process. We consider the combination of two methodologies in this direction. The first is the well-known multilevel Monte Carlo (MLMC) method [7], which is known to reduce the computational effort to achieve a given level of mean square error (MSE) relative to MC in some cases. Sequential Monte Carlo (SMC) (or the particle filter (PF)) methods (e.g. [6]) have also been shown to be beneficial in many option pricing problems potentially reducing variances by large magnitudes (relative to MC) [11, 17]. We propose a multilevel particle filter (MLPF) as an alternative approach to price options. We show via numerical simulations that under suitable assumptions regarding the discretization of the SDE driven by Brownian motion the cost to obtain O $(\epsilon^2)$ MSE scales like O $(\epsilon^{-2.5})$ for our method, as compared with the standard particle filter O $(\epsilon^{-3})$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Big Data and Information Analytics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.