Abstract
In this article a new method to estimate optimum filter length in linear prediction is described. Linear prediction was used to enhance resolution of a spectrum. In particular, the dependence of prediction error on filter length has been studied. With calculations of simulated spectra it is shown that the prediction error falls rapidly when the filter length attains its optimum value. This effect is quite pronounced when the spectrum has a good signal-to-noise ratio and the modified covariance method is used to calculate prediction filter coefficients. The method is illustrated with applications to real Raman spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.