Abstract

Sequential decision-making under multiple objective functions includes the problem of exhaustively searching for a Pareto-optimal policy and the problem of selecting a policy from the resulting set of Pareto-optimal policies based on the decision maker’s preferences. This paper focuses on the latter problem. In order to select a policy that reflects the decision maker’s preferences, it is necessary to order these policies, which is problematic because the decision-maker’s preferences are generally tacit knowledge. Furthermore, it is difficult to order them quantitatively. For this reason, conventional methods have mainly been used to elicit preferences through dialogue with decision-makers and through one-to-one comparisons. In contrast, this paper proposes a method based on inverse reinforcement learning to estimate the weight of each objective from the decision-making sequence. The estimated weights can be used to quantitatively evaluate the Pareto-optimal policies from the viewpoints of the decision-makers preferences. We applied the proposed method to the multi-objective reinforcement learning benchmark problem and verified its effectiveness as an elicitation method of weights for each objective function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.