Abstract

ABSTRACT: The St. Johns River Water Management District (SJR‐WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell‐based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.