Abstract
Recently, brain source localization and beamforming methods have played an important role in enhancing the utility of the electroencephalograph (EEG) and/or the magnetoencephalograph (MEG). Source localization methods are in general very sensitive to parameter values used to describe the underlying lead–field matrix, such as head shape, electrode positions, conductivity of various tissues of the head, etc. Errors in these parameter values can cause significant degradation in performance of these algorithms.In this paper, we develop a robust minimum variance beamformer (RMVB) specifically for EEG applications that can deal with an arbitrary mismatch between the assumed and true lead field matrix. The approach optimizes the worst-case uncertainty performance, sacrificing a distortionless response in exchange for more robust performance. The performance of the RMVB is compared with the classic minimum variance beamformer (MVB) as well as its regularized and eigenspace-based variations. The simulation scenarios highlight the superior ability of the RMVB to cope with arbitrary mismatches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.