Abstract

We developed a computationally efficient approach to approximate near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules. The proposed method relies on extremum principles for Stokes flows produced by the motion of rigid bodies. In the presence of the wall, the rate of energy dissipation is decreased relative to the unbounded fluid. In our approach, the position- and orientation-dependent mobility matrix of a body suspended near a no-slip plane is calculated numerically using a coarse-grained molecular model and the Rotne-Prager-Yamakawa description of hydrodynamics. Effects of the boundary are accounted for via Blake's image construction. The matrix components are scaled using ratios of the corresponding bulk values evaluated for the detailed representation of the molecule and its coarse-grained model, leading to accurate values of the near-wall diffusion coefficients. We assess the performance of the approach for two biomolecules at different levels of coarse-graining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call