Abstract

The objective of this paper was to develop an injury risk model relating real world injury outcomes in near-side crashes with U.S. New Car Assessment Program (NCAP) test performance, crash, and occupant properties. The study was motivated by the longer-term goal of predicting injury outcomes in a future fleet in which all vehicles are expected to have passive safety performance equivalent to a 5-star NCAP rating level (the highest star rating and lowest risk of injury).The dataset used to evaluate injury risk was the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS). Case years 2010–2015 were used. An injured occupant was defined as a vehicle occupant who experienced an injury of maximum Abbreviated Injury Scale (AIS) of 2 or greater, or who were fatally injured. Injury severity was scored using AIS-2005 (2008 update). Cases were selected in which front-row occupants of late-model vehicles were exposed to a near-side crash. Logistic regression was used to develop an injury model with delta-v, belt status, age, and gender as predictor variables. The side crash performance of each vehicle was identified and added to the model by matching each case with the associated performance in the NCAP moving deformable barrier side impact crash test.NCAP MDB test performance, delta-v, and occupant age, sex, and BMI were found to be significant predictors of injury risk. The effect of a 5 % higher risk in the MDB test (approximately one star rating worse) was comparable to a 2.84 km/h increase in delta-v. This model informs the development of active safety systems in a future fleet where vehicle passive safety performance is higher, quantified by the NCAP MDB test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call