Abstract
Air pollution is a major environmental problem and its monitoring is essential for regulatory purposes, policy making, and protecting public health. However, dense networks of air quality monitoring equipment are prohibitively expensive due to equipment costs, labor requirements, and infrastructure needs. As a result, alternative lower-cost methods that reliably determine air quality levels near potent pollution sources such as freeways are desirable. We present an approach that couples noise frequency measurements with machine learning to estimate near-roadway particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) at 1-min temporal resolution. The models were based on data collected by co-located noise and air quality instruments near a busy freeway in Long Beach, California. Model performance was excellent for all three pollutants, e.g., NO2 predictions yielded Pearson's R = 0.87 with a root mean square error of 7.2 ppb; this error represents about 10 % of total morning rush hour concentrations. Among the best air pollutant predictors were noise frequencies at 40 Hz, 500 Hz, and 800 Hz, and meteorology, particularly wind direction. Overall, our method potentially provides a cost-effective and efficient approach to estimating and/or supplementing near-road air pollutant concentrations in urban areas at high temporal resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.