Abstract

We develop, implement and test a set of algorithms for estimating N-point correlation functions from pixelized sky maps. These algorithms are slow, in the sense that they do not break the O(N_pix^N) barrier, and yet, they are fast enough for efficient analysis of data sets up to several hundred thousand pixels. The typical application of these methods is Monte Carlo analysis using several thousand realizations, and therefore we organize our programs so that the initialization cost is paid only once. The effective cost is then reduced to a few additions per pixel multiplet (pair, triplet etc.). Further, the algorithms waste no CPU time on computing undesired geometric configurations, and, finally, the computations are naturally divided into independent parts, allowing for trivial (i.e., optimal) parallelization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.