Abstract
This article estimates most productive scale size in stochastic data envelopment analysis (DEA). Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input–output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2–3), 849–855.] studied most productive scale size in classic data envelopment analysis. The classic data envelopment analysis requires that the values for all inputs and outputs be known exactly. However, this assumption may not be true, because data in many real applications cannot be precisely measured. One of the important methods to deal with imprecise data is considering stochastic data in DEA. Therefore, this research studies most productive scale size with considering stochastic data in DEA. To that end, input–output orientation model introduced in Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input–output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2–3), 849–855.] is extended in stochastic data envelopment analysis. To solve the stochastic model, a deterministic equivalent is obtained. Although the deterministic equivalent is non-linear, it can be converted to a quadratic program. Furthermore, data of software companies is used to apply the proposed approach. Performance of software companies are evaluated based on their scale sizes in classic and stochastic data envelopment analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.