Abstract

Traffic volume data have been collected and used for various purposes in some aspects of intelligent transportation systems (ITS) applications. However, the unavoidable detector malfunction can cause data to be missing. It is often necessary to develop an effective approach to recover the missing data. In most previous methods, temporal correlation is explored to reconstruct missing traffic volume. In this article, a new missing traffic volume estimation approach based on tensor completion is proposed by exploring traffic spatial–temporal information. The tensor model is utilized to represent traffic volume, which allows for exploring the multicorrelation of traffic volume in spatial and temporal information simultaneously. In order to estimate the missing traffic volume represented by the tensor model, a novel tensor completion algorithm, called low multilinear rank tensor completion, is proposed to reconstruct the missing entries. The proposed approach is evaluated on the PeMS database. Experimental results demonstrate that the proposed method is more effective than the state-of-art methods, especially when the ratio of missing data is high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.