Abstract
Rumen microbial protein synthesis (MPS) provides at least half of the amino acids for the synthesis of milk and meat protein in ruminants. As such, it is fundamental to global food protein security. Estimating microbial protein is central to diet formulation, maximising nitrogen (N)-use efficiency and reducing N losses to the environment. Whilst factors influencing MPS are well established in vitro, techniques for in vivo estimates, including older techniques with cannulated animals and the more recent technique based on urinary purine derivative (UPD) excretion, are subject to large experimental errors. Consequently, models of MPS used in protein rationing are imprecise, resulting in wasted feed protein and unnecessary N losses to the environment. Newer 'omics' techniques are used to characterise microbial communities, their genes and resultant proteins and metabolites. An analysis of microbial communities and genes has recently been used successfully to model complex rumen-related traits, including feed conversion efficiency and methane emissions. Since microbial proteins are more directly related to microbial genes, we expect a strong relationship between rumen metataxonomics/metagenomics and MPS. The main aims of this review are to gauge the understanding of factors affecting MPS, including the use of the UPD technique, and explore whether omics-focused studies could improve the predictability of MPS, with a focus on beef cattle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.