Abstract

Measurement error is traditionally represented with probability distributions. Although probabilistic representations of measurement error have been successfully employed in many analyses, such representations have been criticized for requiring more refined knowledge with respect to the existing error than that is really present. As a result, this paper proposes a general framework and process for estimating the measurement error based on evidence theory. In this research cumulative belief functions (CBFs) and cumulative plausibility functions (CPFs) are used to estimate measurement error. The estimation includes two steps:(1) modeling the parameters by means of a random set, and discrediting the random set to focal elements in finite numbers; (2)summarizing the propagation error. An example is demonstrated the estimation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.