Abstract

We consider stochastic volatility models for discrete financial time series of the nonlinear autoregressive-ARCH type with exogenous components.We discuss how the trend and volatility functions determining the process may be estimated nonparametrically by least-squares fitting of neural networks or, more generally, of functions from other parametric classes having a universal approximation property. We prove consistency of the estimates under conditions on the rate of increase of function complexity. The procedure is applied to the problem of quantifying market risk, i.e. of calculating volatility or value-at-risk from the data taking not only the time series of interest but additional market information into account. As an application, we study some stock prices series and compare our approach with the common method based on fitting a GARCH(1,1)-model to the data

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.